

1 / 17

CCOORREE
vv00..9911

CCOORREE –– MMaannuuaall

Table of Contents

1. Program Structure 2

2. Factors (Step 1) 3

3. Blocks (Step 2) 4

Trial Types 4

Blocks .. 5

4. Constraints (Step 3) 5

Transition specification 5

Intra- & inter-factor transitions 5

5. Play (Step 4) 7

Run Length Constraints 7

Optimization Settings 7

Play and Progress Plot 8

Batch Processing 9

6. Evaluate (Step 5) 10

Summary Statistics 10

Output Options 11

7. Algorithm and Modifications 12

Algorithm: Basics 12

Code Structure 13

Modifying Saved States 15

8. Settings ...16

9. Remarks ..17

Future Directions 17

Copyright 17

Abstract

Constraint Randomization Environment (CORE) is a
MATLAB-based program for generating pseudorandom
numeric sequences that follow specific constraints. It
is optimized for factorial designs and includes design
specifications as well as numerous tools for setting
user-defined constraints.

vv00..9911

FFoorrmmeerrllyy:: SSeeqquueennccee GGeenneerraattoorr

http://wwwn.uni-wuerzburg.de�
mailto:roland_pfister@t-online.de�

2 / 17

CCOORREE
vv00..9911

1. Program Structure

The Constraint Randomization Environment
CORE provides a modular interface, sepa-
rating different steps in sequence generation
(Figure 1). A control panel to the right side
of the interface (Steps) guides through the
generation process while a second panel
(Options) will allow program configuration
in future releases of CORE. In release 0.91,
a Quit button is used as dummy button.
The icons in the top row of the interface
can be used to start a new project, save
the current project or load previously
saved projects.

First, the manual will now present detailed
information for each step in the process:

 Factors: Design specification
 Blocks: Trial list specification
 Constraints: Transition settings
 Play: Generate sequences
 Evaluate: View and export se-

quences

Following these topics, the manual will
explain how to modify the code for maxi-
mum customization or implementation in
other MATLAB scripts and applications.

Figure 1. General interface of CORE. The control panels to the right (Options and Steps) can be
used to navigate through the program. When starting up, the Factors panel is displayed by de-
fault.

3 / 17

CCOORREE
vv00..9911

2. Factors (Step 1)

The Factors panel contains the most basic
information about the experimental design.
It is based on the logic of factorial ANOVA
and allows several factors with distinct
levels to be specified. The number of fac-
tors can be adjusted with the +/- buttons
below the factors table (Figure 2). Any
number of factors and any number of le-
vels can be used – large numbers, how-
ever, may result in serious performance
losses.

Custom factor labels and level labels can
be used. These names are only used in-
side the CORE interface and will not be
included in the output (what might become
a feature of a future release). Custom la-
bels are still useful to avoid confusion in
further steps of the sequence generation
procedure.

Note that factor settings influence all fol-
lowing steps in sequence generation.

Figure 2. The Factors panel is the first step in sequence generation. Based on the logic of fac-
torial ANOVA, several factors with distinct levels can be specified.

4 / 17

CCOORREE
vv00..9911

3. Blocks (Step 2)

Like the Factors panel, the Blocks panel is
also used for design specification. This
time, however, the number of to be gener-
ated elements can be edited (Figure 3). To
allow maximum customizability, CORE in-
troduces a new parameter called “trial
type”.

Trial Types

Each trial type represents a specific com-
bination of factor levels. A typical 2 x 2
design thus results in 4 trial types as
shown in Figure 3.

There are two ways of adjusting the num-
ber of trials. First, if your design includes
equal numbers of trials of each trial type,
simply enter this number in the text box
next to “Number of Trials” and press Enter.
CORE then automatically fills each row of
the Count column with this number. The
total number of trial is displayed in the
right text box.

The second way of defining the number of
trials is editing the Count value for each
trial type individually. Using the first method
overwrites these custom settings.

Figure 3. The Blocks panel is used to adjust the number of trials in the experiment. Trials can be
clustered in blocks that may consist of different trial sets.

5 / 17

CCOORREE
vv00..9911

Blocks

The number of blocks can be used to gen-
erate several instances of the trial list (cor-
responding to the concept of experimental
blocks). By default, CORE uses the same
set of trials for every block but it is also
possible to specify different sets of trials
for different blocks.

However, all blocks have to contain an
equal number of trials – only the relative
proportion of different trial types can be
varied. If this requirement is violated, the
total trial count turns red and no sequence
will be generated.

4. Constraints (Step 3)

Four types of constraints can be specified:
intra-factor transitions, inter-factor transi-
tions, run length of trial types (Play panel)
and run length of factor levels (Play pan-
el). Online help for the two constraints to
be specified at this step is provided via the
button to the top right of the window
(Figure 4), the X button can be used to
reset transition settings to equal numbers
that sum to the total number of trials in the
design.

Transition specification

In the current release of CORE, transitions
are specified globally, i.e. the number of
transition constraints refers to all blocks of
the experiment. As only in-block transitions
are evaluated, the total number of transi-
tions is equal to the total number of trials
minus the number of blocks (there are only
n-1 transitions for each block of n trials).

The number of specified transitions is dis-
played at the top of the panel (left text box;
only information of the last table edited is
displayed) and should be about as big as
the total number of transitions (right text
box). CORE can, however, deal with devia-
tions from the optimum value what can be
customized in the Play panel.

Intra- & inter-factor transitions

Intra-factor transitions and inter-factor
transitions can be specified independently
and each of them may or may not be used
for sequence generation.

To illustrate the function of both transition
types, we will use the 2 x 2 design that
was displayed in Figure 3:

Factor 1 Factor 2 Trial Type
Level 1 Level 1 1
Level 1 Level 2 2
Level 2 Level 1 3
Level 2 Level 2 4

Now consider the following situation: Trial
n-1 was of trial type 1 and trial n was of
trial type 2. This transition can be seen as
any of four cases:

 Factor 1 Level 1 is repeated (top left

cell in Figure 4)
 Factor 2 Level 1 is followed by

Factor 2 level 2
 Factor 1 Level 1 is followed by

Factor 2 Level 2 – an inter-factor
transition

 Factor 2 Level 1 is followed by
Factor 1 Level 1

6 / 17

CCOORREE
vv00..9911

The former two cases represent intra-
factor transitions whereas the latter two
represent inter-factor transitions. Each has
to be specified separately even though
equal transition numbers are generated
when the Constraints panel is opened for
the first time (and can be reset at any point
by pressing the X button). Resetting is
also useful when trial numbers are altered
after the Constraints panel was opened
once.

Transition specifications will only
be used for sequence generation
when the box at the top left of each table
is ticked. By default, however, transition
numbers are still computed and can thus
be used for evaluating a final sequence.

For most sequences, transition constraints
will not be crucial but they provide a po-
werful tool for controlling even subtle as-
pects of a sequence.

Figure 4. The Constraints panel adjusts the target number of intra-factor transitions and inter-
factor transitions. Further constraints (run lengths for trial types and factor levels) can be set in the
Play panel. The left text box contains the sum of specified transitions for intra-factor transitions (0)
while the right text box indicates the overall number of transitions in the current design which is
computed as the total number of specified trials minus the number of blocks. As no trials were spe-
cified in the last step (Figure 3), -1 transitions are displayed.

7 / 17

CCOORREE
vv00..9911

5. Play (Step 4)

The Play panel lets you specify further
constraints and starts the generation
process. Further controls include a batch
processing sub-panel as well as a
progress plot for visual sequence inspec-
tion. In case you want to generate a sim-
ple list of trial types without randomization,
you can simply deactivate the checkbox at
the top left of the panel (Figure 5).

Run Length Constraints

In CORE, run length refers to the maximum
number of repetitions that are allowed for
a given trial type or factor level. The follow-
ing (re-used) sequence exemplifies how
both parameters are computed.

Factor 1 Factor 2 Trial Type
Level 1 Level 1 1
Level 1 Level 2 2
Level 2 Level 1 3
Level 2 Level 2 4

Assume that CORE produced the following
sequence of trial types:

3 1 2 2 3 1

The maximum number of repetitions of all
trial types is 1 (2 → 2) whereas the max i-
mum number of factor level repetitions is 2
as trial type 1 and trial type 2 both trial
types belong to Factor 1 Level 1.

Currently, it is not possible to allow any
violations of the maximum run length /
repetition settings. Also, the run length
specification is treated a global parameter
so that only the maximum number of repe-
titions across all trial types (or factor le-
vels) will be saved. A more specific setting
of run length constraints might become a
feature in future releases.

Both run lengths parameters will only be
used for sequence generation if the re-
spective box is ticked. They are, however,
still computed and will be displayed in the
Evaluation panel once a sequence is gen-
erated.

Optimization Settings

Three settings directly affect the behavior
of CORE during the process of sequence
generation: maximum iteration count, be-
ginning threshold, and target accuracy.

The maximum iteration count indicates
how many sequences should be tested
against the specified constraints before
CORE aborts the process even if no valid
sequence was found. Sequence genera-
tion can also be manually aborted with the
Stop button (left button of the center con-
trols).

The beginning threshold indicates which
minimum deviation from specified transi-
tion numbers should be used to cache the
best sequence even if it does not match
the criterion. The number refers to the sum
of squared differences between transition
specifications and transitions within the
sequence that is currently evaluated.

Target accuracy also refers to the sum of
squared differences but indicates the max-
imum sum that still qualifies as a valid se-
quence. This parameter is especially use-
ful when not all transition constraints can
be matched simultaneously (or if this case
is very unlikely). A target value of 0 results
in very long computation times in most
cases.

8 / 17

CCOORREE
vv00..9911

Figure 5. The Play panel includes further constraint specifications as well as batch processing op-
tions (top central control). After all settings have been made, the Play button starts the generation
process.

Play and Progress Plot

Pressing the Play button will start the se-
quence generation process. Each itera-
tion, a random permutation of all selected
trial types is created and tested against
the constraints specified.

The process can be paused or aborted at
any time but the current iteration will still
be completed – CORE does not do things
by halves.

The progress plot serves as a visual in-
spection tool of the generation process.

The y-axis displays the sum of squared
differences between transition specifica-
tions and transition numbers in the current
sequence (gray line) or the best prelimi-
nary results (blue line). The iteration index
is plotted on the x-axis.

The progress plot is designed as detection
tool for specification errors. However, plot-
ting needs computation time so that it
might be worth turning the tool off when no
errors are apparent.

9 / 17

CCOORREE
vv00..9911

Batch Processing

The top central control of the Play panel
enables the batch processing sub-panel
(Figure 6). Each sequence will be written
to a separate output file in the chosen
folder and a counter is appended to the
output file name. All batch processing set-
tings have to be completed before the
generation process is started.

Batch processing output can be any of the
four output types (see Evaluate (Step 5)
for details):

 MATLAB (.mat)
 Text (PC; .txt)
 Text (Unix; .txt)
 MS Excel (.xls)

Figure 6. The Batch sub-panel can be accessed from the Play
panel. Any number of sequences may be generated though all
batch specifications have to be completed before the generation
process is started. All generated sequences can be evaluated
separately in the Evaluate panel.

10 / 17

CCOORREE
vv00..9911

6. Evaluate (Step 5)

The Evaluate panel (Figure 7) contains
various statistics of generated sequences.
It can only be accessed when a valid se-
quence was produced with the Play panel
(or a preliminary sequence is cached).

Summary Statistics

Several aspects of a sequence can be
assessed. First, the sum of squared differ-
ences refers to the difference between
transition specifications and transitions in
the sequence. The summed squared dif-
ference relates to the summary tables of

the Evaluate panel which display the num-
ber of transitions in the sequence (upper
table) and the difference to the respective
specifications (lower table).

The maximum repetitions statistics refer to
the maximum number of trial type repeti-
tions (left box) and factor level repetitions
(right box).

If batch processing was enabled, separate
results can be viewed for each sequence
(top left dropdown menu).

Figure 7. The Evaluate panel displays information about generated sequences and offers several
output options.

11 / 17

CCOORREE
vv00..9911

Output Options

Two output files can be generated for each
sequence: the sequence itself and transi-
tion tables. The sequence output gene-
rates an output file that contains a list of
trial types organized in rows while blocks
are separated in columns (Figure 8). The
structure of transition output is explained

in Figure 9. Four output file types are poss-
ible and are explained in the figures:

 MATLAB (.mat)
 Text (PC; .txt)
 Text (Unix; .txt)
 MS Excel (.xls)

Figure 8. A sequence of two blocks contain-
ing four different trials each as MATLAB (top
left), text (top right) and MS Excel output
(bottom right). The .mat output file contains
a variable named ‘output-sequences’ which
is a numeric array. PC and Unix text files on-
ly differ regarding the line terminator. Excel
output needs more computation time than
other output file types.

Figure 9. Transition output of
any file type contains at least
three columns of data: the first
two columns represent the trial
type at trial n-1 (1st column)
and at trial n (2nd column). The
following columns contain the
number of these transitions in
each block of trials. One col-
umn per block is used.

This example is the .mat output
of the sequences displayed in
Figure 8.

12 / 17

CCOORREE
vv00..9911

7. Algorithm and Modifications

Algorithm: Basics

CORE uses a brute force algorithm to gen-
erate pseudo-randomized sequences and
tests the generated sequence against all
specified constraints. The most basic vari-
able used is blocks_trial_list which contains
a number or columns corresponding to the
number of blocks specified and each col-
umn consists of as many rows as trials
were specified. Each number represents a
specific trial type.

For the example of our 2 x 2 design with 2
blocks and 4 trials each, blocks_trial_list will
look like this:

Figure 10. Starting point of the generation
process.

In a first step, each block is randomized
independently by means of the randperm
command. The randomized sequence is
stored in a temporal variable.

Then, CORE works through the sequence,
evaluating the run length of every trial type
and every factor level. After that, the num-
ber of transitions is computed for every
possible pair of trial types.

Finally, the summed squared differences
for all transitions as well as both run length
specifications are compared with the stop
criterion. If all criteria are met, these three
variables are stored within the cell array
valid_transition_parameters. Specific transi-
tions in the sequence and are stored in
another, hierarchically structured cell array
(valid_transitions_evaluation). This latter ar-
ray can become a surprisingly complex
structure when many factors and/or many
factor labels are used (see Figure 11 for a
detailed description).

Figure 11. Structure of the cell array
valid_transitions_evaluation that stores
specific transitions within the sequence.

This example for valid_transitions_evaluation again is a 2 x 2 design, this
time, however, with only one block of four trials. The topmost level (left
screenshot) contains one cell per block. This cell itself is another cell array
(middle screenshot) containing one cell per possible combination of fac-
tors: cell {1,1} for instance represents intra-factor transitions for Factor 1.

This cell contains a third cell array with
as many lines and columns as there are
levels of the corresponding factors. Cell
{2,2} for instance states that there are 0
repetitions of Factor 1 Level 2.

13 / 17

CCOORREE
vv00..9911

Code Structure

Both algorithms for run length / repetitions
testing – one for trial type repetitions, one
for factor level repetitions, follow the same
structure so that only the former one is
presented here.

The algorithm for trial type repetitions first
gets the number of blocks and number of
trials per block (Code 1; lines 5 and 6).
Then, it iterates through all trials, starting
with the second trial in each block.

For each trial, it is checked whether the
preceding trial was of the same trial type
or of a different trial type. If trial types are
equal, a repetitions counter is increased
by 1 (line 8) and compared to the current
maximum number of repetitions. If both
trial types are not equal, however, the re-
petitions counter is set to zero (line 12).

The maximum count is saved for evaluation
in a separate variable.

 1 %Run length for trial types.
 2 n_repetitions_ttype = 0;
 3 max_repetitions_ttype = 0;
 4
 5 for j = 1:size(sequence_array,2) % Iterate over all blocks
 6 for i = 2:size(sequence_array,1) % Iterate over all trials
 7 if sequence_array(i,j) == sequence_array(i-1,j) %If trial type
 8 n_repetitions_ttype = n_repetitions_ttype + 1; % is repeated:
 0 max_repetitions_ttype = ... % > counter++1
 10 max(max_repetitions_ttype,n_repetitions_ttype);
 11 else
 12 n_repetitions_ttype = 0; % if not rep.:
 13 end; % > counter=0
 14 end;
 15 end;

Code 1. Run length / maximum repetitions computation for trial types. The algorithm for factor levels
has the same structure but uses a different array containing the factor levels belonging to each trial type.

The algorithm for transition evaluation is
based on the array described in Figure 9
which contains an additional column with

the sum of transitions for each pair of trial
types. This array is created in the following
way (Code 2). [Continued on page 15]

 1 transitions = zeros(size(possible_transitions,1),n_blocks+3);
 2 transitions(:,1:2) = possible_transitions;
 3 for i = 1:(size(sequence_array,1)-1)
 4 for j = 1:n_blocks
 5 transitions((((sequence_array(i,j)-1)*n_trial_types) + ...
 6 sequence_array(i+1,j)),j+2) = ...
 7 transitions((((sequence_array(i,j)-1)*n_trial_types) + ...
 8 sequence_array(i+1,j)),j+2)+1;
 9 end;
 10 end;
 11
 12 for i = 1:(n_trial_types * n_trial_types)
 13 transitions(i,end) = sum(transitions(i,3:(end-1)));
 14 end;

Code 2. Transition array. Only the last column created in line 13 is used for further computations.

14 / 17

CCOORREE
vv00..9911

 1 %Evaluate transitions for every pair of factors.
 2 overall_difference = 0;
 3 overall_difference_intra = 0;
 4 overall_difference_inter = 0;
 5
 6 for factor_n1 = 1:n_factors
 7 for factor_n2 = 1:n_factors
 8
 9 %Get current factor labels.
 10 cf1 = ttypes_to_flevels(:,factor_n1);
 11 cf2 = ttypes_to_flevels(:,factor_n2);
 12
 13 %Evaluate transitions for every pair of levels.
 14 for level_n1 = 1:factor_list{factor_n1,3}
 15 for level_n2 = 1:factor_list{factor_n2,3}
 16 ttypes_1 = ttypes(cf1==level_n1);
 17 ttypes_2 = ttypes(cf2==level_n2);
 18
 19 for i = 1:(n_trial_types * n_trial_types)
 20 if sum(ttypes_1 == transitions(i,1)) == 1
 21 indexer_temp(i,1) = 1;
 22 else
 23 indexer_temp(i,1) = 0;
 24 end;
 25 if sum(ttypes_2 == transitions(i,2)) == 1
 26 indexer_temp(i,2) = 1;
 27 else
 28 indexer_temp(i,2) = 0;
 29 end;
 30 indexer(i,1) = min(indexer_temp(i,:));
 31 end;
 32 evaluation = transitions(:,end);
 33 indexer = logical(indexer);
 34 transitions_evaluation{factor_n1,factor_n2}{level_n1,level_n2}...
 35 = sum(evaluation(indexer));
 36 transitions_difference{factor_n1,factor_n2}{level_n1,level_n2}...
 37 = sum(evaluation(indexer)) - constraints_transitions ...
 38 {factor_n1,factor_n2}{level_n1,level_n2};
 39 if factor_n1 == factor_n2
 40 overall_difference_intra = overall_difference_intra + ...
 41 (sum(evaluation(indexer)) - constraints_transitions ...
 42 {factor_n1,factor_n2}{level_n1,level_n2})^2;
 43 else
 44 overall_difference_inter = overall_difference_inter + ...
 45 (sum(evaluation(indexer)) - constraints_transitions ...
 46 {factor_n1,factor_n2}{level_n1,level_n2})^2;
 47 end;
 48
 49 end;
 50 end;
 51
 52 end;
 53 end;

Code 3. Transition computation for intra- and inter-factor transitions. Sum of squares for both transition
types are later combined to an overall sum of squares (depending on user specifications). See text for
a more detailed description.

15 / 17

CCOORREE
vv00..9911

Using a further array containing the map-
ping of trial types to factor levels, the tran-
sition array is restructured so that is cor-
responds to the cell array described in
(Figure 11, valid_transitions_evaluation). Then,
both arrays are compared element-wise
while the differences for each cell are
squared and summed to arrive at a meas-

ure of fit between transitions in .
the sequence and user-specified .
constraints.

Especially the transition evaluation takes a
lot of computation time so that it is highly
recommended to create a modified version
of this code for more complex applications.

Modifying Saved States

CORE-sessions can be saved as .mat files.
These files contain the single structure
Saved_Sequence. The structure has 3 fields
(Figure 12) that can be modified without
running CORE.

General_Information is a string indicating
the version of CORE (“Sequence Genera-
tor” up to version 0.91, “CORE” for all later
releases).

Program_Settings stores settings for all
elements of the CORE interface. Tables are
stored as cell arrays, all other elements
either as integers or strings (depending on
typical MATLAB commands for the handles
structure of GUIDE).

Base_Workspace contains a number of
variables that are normally stored in the
base workspace of MATLAB, including all
that are relevant for evaluation and output.

Figure 12. Structure of a save file (.mat). See text for a more detailed description.

16 / 17

CCOORREE
vv00..9911

8. Settings

To be introduced in future releases of CORE….

17 / 17

CCOORREE
vv00..9911

9. Remarks

Future Directions

The following features are currently dis-
cussed as features in future releases of
CORE:

 Settings panel (including options

for detailed control over what is
computed (even if not displayed))

 Experiment/project name in Fac-
tors panel.

 Run length (repetition) settings for
each trial type and factor level indi-
vidually (optionally) – will require a
redesign of the run length interface
which will be included in the Con-
straints panel

 Redesign of the Constraints panel
so that it provides the possibility to

switch between transition and run
length constraints

 Adjusting the sequence generation
mechanism to allow unequal blocks

 Adding run length and maximum
run length to the progress plot

 New optional algorithm (‘half-brute’)
allowing faster convergence on
working solutions

 Output: Optional replacement of
trial type numbers with a list/table
of factor level labels

 The plot might be removed in the
next release and will be substituted
by another diagnostic tool

 Transition specifications on the
level of individual trial types

Copyright

Copyright © 2009, Roland Pfister,
University of Würzburg, Germany.
All rights reserved [BSD-License].

Redistribution and use in source and bi-
nary forms, with or without modification,
are permitted provided that the following
conditions are met:

 Redistributions of source code must

retain the above copyright notice,
this list of conditions and the follow-
ing disclaimer.

 Redistributions in binary form must
reproduce the above copyright
notice, this list of conditions and the
following disclaimer in the documen-
tation and/or other materials pro-
vided with the distribution

 Neither the name of the University of
Würzburg nor the names of its con-
tributors may be used to endorse or
promote products derived from this
software without specific prior writ-
ten permission.

mailto:roland_pfister@t-online.de�
http://www.uni-wuerzburg.de/�
http://www.opensource.org/licenses/bsd-license.php�

	Program Structure
	Factors (Step 1)
	Blocks (Step 2)
	Trial Types
	Blocks

	Constraints (Step 3)
	Transition specification
	Intra- & inter-factor transitions

	Play (Step 4)
	Run Length Constraints
	Optimization Settings
	Play and Progress Plot
	Batch Processing

	Evaluate (Step 5)
	Summary Statistics
	Output Options

	Algorithm and Modifications
	Algorithm: Basics
	Code Structure
	Modifying Saved States

	Settings
	Remarks
	Future Directions
	Copyright

