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ABSTRACT

The error-related negativity (ERN) is a classic electrophysiological index of error detection. However, the present study challenges
its classical functional interpretation by analyzing the ERN relative to the termination of erroneous actions (response offsets),
a behavioral marker of error cancellation. Our findings reveal that the ERN reflects immediate auto-cancellation of ongoing
erroneous behavior. Specifically, our findings corroborate that erroneous responses come with significantly shortened response
durations (RDs) compared to correct responses, pointing to an immediate and active cancellation of ongoing motor activity.
Crucially, ERN amplitude and latency varied with RDs, indicating that the ERN may reflect not only passive error detection
but also the autonomous implementation of corrective behavior. These observations portray human performance monitoring
as consisting of two components: a passive component related to detecting action slips, and an active component related to the
implementation of behavioral changes. Moreover, these results carry important clinical implications. Abnormal ERN patterns
observed in conditions such as obsessive-compulsive disorder, anxiety, and Parkinson's disease may stem not solely from im-
paired error detection but from disrupted regulation and cancellation of erroneous actions. By integrating behavioral dynamics
with electrophysiological measures, our study highlights the need to reconsider the functional significance of the ERN in both
cognitive neuroscience and clinical contexts.

1 | Introduction Danielmeier and Ullsperger 2011; Maier et al. 2011; Wessel and

Aron 2017; Dehaene 2018). It also comes with direct clinical im-

To err is human, but every single action slip is critical and needs
to be detected as fast as possible. Human neurophysiology has
linked fast and efficient error detection to a distinct event-related
potential peaking within only 100 milliseconds after error com-
mission (Renault et al. 1980; Gehring et al. 1993; Falkenstein
et al. 1990). This error-related negativity (ERN) is often seen as
the initial step of performance monitoring, preparing the ground
for later error correction and strategic adaptation of cognitive
processing (Ridderinkhof et al. 2004; Logan and Crump 2010;

plications (Olvet and Hajcak 2008), as abnormal error detection
is associated with conditions such as obsessive-compulsive dis-
order (Gehring et al. 2000), anxiety and depression (Holmes and
Pizzagalli 2008), Parkinson's disease (Beste et al. 2010), as well
as schizophrenia (Foti et al. 2012).

While the significance of the ERN in error-processing has been
explored for decades at this point, earlier studies have tended to
overlook the behavioral indicators associated with the ERN (see
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also Kieffaber et al. 2023). Past studies have predominantly em-
ployed experimental designs that limit participant responses to
discrete key presses, focusing on solely response initiation as op-
posed to response termination (but see Pfister et al. 2023). This
approach blurs the distinction between the onset and conclusion
of an action, making it difficult to observe real-time processes
such as error monitoring and correction (Kieffaber et al. 2023).
Nonetheless, some approaches tried to address this limitation by
either examining “partial errors” in which an error is initiated
but a correct response is ultimately given (Vidal et al. 2003; Burle
et al. 2008; Masaki et al. 2007; Pailing and Segalowitz 2004;
Carbonnell and Falkenstein 2006), or by analyzing continuous
movements, such as mouse trajectories (Kieffaber et al. 2016,
2023; Rodriguez-Fornells et al. 2002). This research suggests
that the latency of the ERN is strongly correlated with the peak
deceleration of the initiated movement prior to response correc-
tion (Kieffaber et al. 2023; Tafuro et al. 2020). In line with these
results, recent behavioral observations of immediate error can-
cellation even for short-lived keypress actions suggest a funda-
mentally different reading of the ERN's functional significance
(Hochman et al. 2017; Foerster et al. 2022): A distinct ERN sig-
nature might in fact originate from immediate efforts to cancel
ongoing erroneous movements on the fly rather than reflecting
prediction errors or response conflict as previously assumed.
However, these behavioral results (e.g., Foerster et al. 2022) were
not accompanied by neurophysiological measures to substan-
tiate this inference. Therefore, we hypothesized that stronger

behavioral evidence for active cancellation predicts larger ERN
amplitudes, shorter ERN latencies, and a distinct contribution of
response offset to electrophysiological activity.

We probed for this possibility by measuring electroencephalo-
graphic (EEG) activity in an effective sample of 30 healthy par-
ticipants while they performed an error-eliciting choice-response
task. This task required speeded left versus right responses to
target letters that were displayed on screen (Figure 1A; see the
Supporting Information for details). Irrelevant letter stimuli
surrounded the target; they were not mapped to any response
but yielded visual noise, and a strict response deadline ensured
that participants would commit sufficiently many errors. For
each response, we measured its onset (response time, RT), and
crucially its offset, to determine response duration (RD; i.e., the
time between pressing and releasing the key, Pfister et al. 2023).

Both measures come with a unique pattern surrounding erro-
neous actions. RTs decrease prior to error commission (pre-
error speeding), and they markedly increase following an error
(post-error slowing; Dudschig and Jentzsch 2009; Jackson and
Balota 2012; Pfister and Foerster 2022). The interplay of pre-
error speeding and post-error slowing has been suggested to
reflect a shift in decision criteria with impulsive responding
immediately before error commission and cautious respond-
ing following error commission (Jentzsch and Dudschig 2009;
Danielmeier and Ullsperger 2011; Hoffmann and Beste 2015;
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FIGURE 1 | Experimental design and aggregate results. (A) Participants classified a central letter stimulus with left versus right keypresses.

Additional irrelevant letter stimuli added visual noise, and a strict response deadline of 600 ms ensured that the task elicited sufficiently many errors
for analysis. (B) Response times (RTs) and response durations (RDs) for commission errors (E) and correct peri-error trials. Error bars indicate 95%
confidence intervals for paired differences (CI,) relative to the immediately preceding response. Commission errors came with systematically re-
duced RDs, indicating active error cancellation. (C) Event-related potentials at electrode site FCz, time-locked to response onset (R). Data for correct
responses and errors were split at their median RD across trials to investigate the impact of error cancellation on the error-related negativity (ERN),

with response offsets + standard error shown as point overlays. (D) Mean amplitudes (left; time window: [32ms, 82ms] post-error) and peak times

(right) at electrode FCz with corresponding standard errors of paired differences (SE,; see the Supporting Information for multi-electrode results).

(E) Individual ERN waveforms for short and long errors relative to correct responses, including their spatial topography. (F) Temporal evolution of

the ERN and the difference between short and long errors across the vertex electrodes.
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Steinhauser et al. 2017). Post-error slowing further captures at-
tentional distraction (Notebaert et al. 2009), and it is especially
pronounced when erroneous responses cannot be corrected, in-
dicating sustained processing of potential correction responses
(P. M. A. Rabbitt 1966; Crump and Logan 2013).

Recent observations pointed towards a diverging pattern for
RDs, with particularly short RDs for erroneous responses
as compared to all correct responses surrounding the error
(Hochman et al. 2017; Foerster et al. 2022). This pattern is
stable across the entire RT distribution and cannot be ex-
plained in terms of other biomechanical differences such
as reduced force of erroneous responses (P. Rabbitt 1978;
Foerster et al. 2022). Further, shortened RDs for erroneous re-
sponses arose mainly after a response reached its peak force.
Together, the findings for RDs therefore indicate immediate
and active cancellation or termination of ongoing motor activ-
ity. We thus assessed electrophysiological activity as a func-
tion of RD to explore the neurophysiological underpinnings of
error cancellation. To this end, we split the data into responses
with short versus long RDs, predicting a particularly strong
impact of error cancellation for short durations. We then fol-
lowed up on this coarse-grained procedure by computing a
residue-iteration decomposition (RIDE) analysis to elucidate
the unique contribution of response offsets to ongoing electro-
physiological activity.

2 | Materials and Methods

2.1 | Power Analysis, Sample Size, and Participant
Demographics

The ERN is a highly reliable component of the event-related
potential (ERP) that is readily observed in single-subject data.
Similarly, large error cancellation effects on RDs have recently
been reported (dZ =1.34; Foerster et al. 2022). We therefore based
our sample size on a conservative power analysis assuming a ge-
neric medium effect size of d,=0.50 (power 1-=0.80, ¢ =0.05),
suggesting a sample size of 34 participants. This sample size
ensures a power of 1-3>0.99 for detecting previous RD effects.
We preregistered this target sample size on the Aspredicted plat-
form (https://aspredicted.org/LR9_JJL).

An initial sample of N=34 participants was recruited through
advertisements in the local participant recruitment system.
Their mean age was 28.53years (range: 20-64years). Nine par-
ticipants self-identified as male, 25 as female, 3 as left-handed,
29 as right-handed, and 2 as ambidextrous. All participants
reported normal or corrected-to-normal visual acuity. The
study was conducted in accordance with the guidelines of the
ethics committee of the Institute of Psychology, University of
Wiirzburg, Germany. We did not seek individual approval for
this study protocol for using a mundane choice response task
with healthy participants. All participants provided written in-
formed consent before participation.

The data of four participants had to be excluded from the analy-
sis: Three datasets did not match our pre-determined inclusion
criteria of at least 10 usable trials per condition, and one data-
set had missing data in the electrooculogram (EOG) readings,

which did not allow for meaningful correction of blink and eye-
movement artifacts. The effective sample size of 30 participants
still came with a power of 1-8>0.99 for standard ERN analysis
and behavioral error cancellation effects alike.

2.2 | Apparatus and Electrophysiological
Recording

Participants completed the task in an electrically shielded cham-
ber. Stimuli appeared on a 17 monitor (75Hz), and participants
responded with their left and right index fingers on the two lat-
eral keys of a PST Chronos device (Psychology Software Tools;
Sharpsburg, PA, USA; the first author thanks PST for sponsor-
ing the device as part of their E-Prime Challenge 2019). This
setup allowed us to record response onsets and offsets with <1
millisecond precision, thus yielding precise estimates of the cor-
responding RDs.

We recorded EEG activity with a BrainVision QuickAmp am-
plifier with 32 active electrodes (actiCAP; Brain Products,
Germany). Electrode sites were arranged according to the inter-
national 10-20 system, with electrodes placed at FP1, FP2, F7,
F3, Fz, F4, F8, FCz, FC1, FC2, AFz, T7, C3, Cz, C4, T8, TP9,
CP1, CP2, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, 02, PO10, as
well as the left and right mastoids (M1, M2). The EEG signal
was recorded using average reference with a sampling rate of
1000Hz and impedances < 10kQ.

Additional passive electrodes above and below the left eye,
as well as at the outer canthi of both eyes tracked the verti-
cal and horizontal electrooculogram (EOG) to control for eye
movements.

2.3 | Task

Participants responded to one of four target letters on every trial
with a left versus right keypress. The letters R and N mapped
to one response, whereas V and K mapped to the other re-
sponse, with counterbalanced mapping of the two letter pairs
to responses across participants. The target letter appeared cen-
trally in a grid of 3x3 characters. The other eight characters
displayed one of eight irrelevant letters that did not map onto
any response (i.e., O, W, X, U, Z, Y, H, or A; all eight irrelevant
letters had the same identity on each trial). We instructed partic-
ipants to ignore the irrelevant letters and inserted these stimuli
only to elicit errors through perceptual noise. All letters were
displayed in white font on a black background. The combination
of four target letters and eight irrelevant letters, respectively,
resulted in 32 individual stimulus constellations. In an initial
practice block, participants went through a random order of
these combinations. In the following 19 experimental blocks,
each combination appeared twice at a random position in the
block, resulting in 64 trials per block. Blocks were separated
by self-paced breaks, during which a written message encour-
aged participants to respond as fast and accurately as possible
throughout the experiment.

The first trial of each block started with a fixation of 750 ms.
Then the target letter appeared for a maximum of 600ms,
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which disappeared when participants responded before that
deadline. Participants immediately received feedback about
the accuracy of each response for 1000ms in the practice
block (translated from German: “Good!” in green font for cor-
rect responses; “Wrong!” in red font for incorrect keypresses
and “Too slow!” in red font if they omitted their response).
Participants only received feedback for omission errors in ex-
perimental blocks, but no feedback for correct responses or
commission errors. However, we provided aggregate feed-
back about the mean correct RT, the number of incorrect
keypresses, and the number of omission errors after each
block. Afterward, a white fixation cross appeared centrally for
500ms, and then the screen went blank for 1000 ms. We con-
tinued to collect key presses and releases after target presen-
tation to measure RD and to identify and exclude trials with
late additional responses (labeled miscellaneous errors in the
following).

2.4 | Data Preprocessing

All preprocessing and analysis steps were implemented via cus-
tom R scripts (using the packages ez, doBy, MBESS, and schoRsch)
as well as custom Matlab code that utilized the FieldTrip toolbox
(Oostenveld et al. 2010). All scripts are available on the Open
Science Framework (https://osf.io/4vncf/).

For the behavioral data, we first removed all trials of the prac-
tice block. We then searched through the data and selected
all trials with commission errors (10.09% of all trials; miscel-
laneous errors with anticipative responses or more than one
keypress: 0.34%; omission errors: 8.64%). From these trials, we
selected only those commission errors with two preceding cor-
rect trials and two following correct trials. We departed from
our pre-registered plans of using only +1 correct peri-error tri-
als for the behavioral analysis to be able to compute pre-error
speeding and post-error slowing relative to close peri-error tri-
als (Pfister and Foerster 2022; using the trial selection of the
EEG analysis produced virtually identical results for all follow-
ing RD analyses):

(RTE—Z +RTE+2)

2
(RTp_,+RTg,,)

2

Pre —error speeding = —RTy_,

Post —error slowing=RT,, —

We screened the data for outliers as defined by RD deviating
more than 2.5 standard deviations (SDs) from the correspond-
ing cell mean, computed separately for correct and erroneous
responses of each participant (1.34%). To retain a balanced data-
set, we removed each chunk of error and its accompanying +2
correct peri-error trials when detecting at least one outlier in the
sequence, removing 5.96% of the error sequences.

For the remaining data, we determined for each trial whether its
RD was shorter or longer than the condition median, again cal-
culated separately for correct and erroneous responses of each
participant. RDs exactly matching the median were assigned to
the slower bin.

EEG preprocessing used all error trials that came with at
least one preceding correct trial. We first read trial segments
of 1200ms around the event of interest (stimulus onset, re-
sponse onset, response offset) and baseline-corrected each
epoch (stimulus-locked baseline: [-100ms, 0ms]; response-
onset baseline: [-150ms, —50ms]; response-offset baseline:
[-300ms, —200ms]). We then applied a band-stop filter to re-
move line noise ([47.5Hz, 52.5Hz]) using FieldTrip's 4th order
forward-backward Butterworth infinite impulse response
(ITIR) filter, and subjected the resulting data to the artifact
detection routines of FieldTrip based on the average z-value
of the signal amplitude (Hilbert envelope) across electrodes
(jump artifacts: cutoff =20; muscle artifacts: cutoff=8 with
band-pass filter at [110Hz, 140 Hz]). Epochs containing at
least one artifact were removed from the data (12.56% of the
trials).

To avoid biases due to different trial numbers after artifact
rejection, we assessed the frequency of the remaining short
and long error trials in each dataset and removed trials with
RDs closest to the median RD of the condition with more data
points until both conditions had identical trial numbers (re-
sulting in 19.43 remaining error trials per RD condition on
average).

The final selection of trials then entered a correction for blink
and eye movement artifacts based on independent component
analysis (ICA). After ICA decomposition, we removed com-
ponents that correlated with either EOG channel (threshold:
r=0.40) and recomposed the data. We then re-referenced the
data to linked mastoids, re-applied the corresponding baseline
corrections, and filtered the final data at 0.1Hz high-pass and
20Hz low-pass (both 4th order).

The described preprocessing algorithm applied to all main anal-
yses. Adjustments of these general procedures were only im-
plemented for analyses using RIDE analyses and for analyses
assessing the lateralized readiness potential (LRP). For our ini-
tial RIDE analysis, we collapsed the data across RD bins, because
this single-trial analysis leverages the trial-by-trial variability
of different signal components (here: response onset versus re-
sponse offset) and therefore does not require any prior binning.
This analysis was complemented by separate RIDE analyses of
short and long errors to assess amplitude effects in addition to
the latency focus of the initial RIDE analysis. For both appli-
cations of the RIDE algorithm we tested whether a decompo-
sition into 3 clusters was warranted over a solution with only
two clusters (R-Onset and R-Offset without an R-Intermediate
cluster in between; with R=response). Even though the crucial
observation of a distinct ERN response in the R-Offset clus-
ter emerged in 2- and 3-cluster solution alike, the intermedi-
ate cluster turned out to capture the distinct P, component of
the ERP (e.g., Nieuwenhuis et al. 2001; Overbeek et al. 2005),
so that we chose to implement all three clusters (see Figure 2;
the P, was located in the R-Offset cluster for two-cluster solu-
tions). We further ensured that RDs introduced a temporal jitter
with sufficiently meaningful variation as compared to response
times. This was indeed the case as suggested by analyses of
Coefficients of Variation (CV) with CV, even exceeding CV
for correct responses and errors alike, #(33)>4.55, ps<0.001,
d,>0.83. LRP analysis additionally split the data according to
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FIGURE2 | Single-trial analyses for erroneous and correct responses. (A) Residue-iteration decomposition (RIDE) of the signal at electrode FCz

into three distinct clusters, with marked error-related negativity (ERN) in the response onset cluster and the response offset cluster (R =response).

Shaded areas indicate standard errors of paired differences between correct and erroneous responses, whereas horizontal bars show significant

differences as indicated by permutation tests. Intriguingly, only errors elicited reliable activity in the response offset cluster, reinforcing the active
cancellation account. (B) Topographies for the difference wave (Error — Correct) for both clusters that contributed to the ERN (R-Onset, R-Offset).

Timestamps mark the beginning of each time window of 50 ms.

the actual response (left vs. right) in order to compute the LRP.
We restricted this analysis to a subset of 15 participants with at
least 15 trials per error type and did not enforce equal trial num-
bers per condition to be able to compute meaningful LRP statis-
tics. We verified that the subset of participants showed similar
ERP responses as the full sample to establish that potential LRP
results do not reflect specific properties of the selected sub-set.

2.5 | Simulations

Finally, we implemented a computational model to test whether
the observed ERN signature locked to response-offsets can be
explained by conflict-monitoring theories of the ERN (Carter
et al. 1998; Botvinick et al. 2001; Gehring and Fencsik 2001;
Yeung et al. 2004). Conflict-monitoring accounts explain the
ERN as reflecting conflict that is triggered by the parallel ac-
tivation of competing action plans. In this computational for-
mulation, conflict is proportional to the activation product of
two competing response nodes in a recurrent neural network
(the Hopfield energy; Botvinick et al. 2001; Yeung et al. 2004).
Simulations with this model provide an elegant account for the
ERN signature being tied to the preparation and onset of er-
roneous actions. To determine whether they can also account
for offset-locked activity, we implemented a variant of the con-
flict monitoring model (Yeung et al. 2004) that we adapted to
the present task. Figure 3 provides a schematic of the model
architecture.

3 | Results
3.1 | Main Findings

A mean error rate of 10.3% (SD=4.1%) for commission errors
confirmed that the task succeeded in eliciting sufficiently many
commission errors for meaningful analysis. All other potential
errors such as response omissions or multiple responses within a
single trial accounted for another 11.2% of the trials (SD =7.4%).

Figure 1B shows both behavioral measures, i.e., RDs and RTs,
for erroneous responses, the two correct responses preceding
an error, and the two correct responses following this error.
A repeated-measures analysis of variance (ANOVA) on mean
RDs yielded a significant effect of trial sequence (E-2, E—1,
E, E+1, E+2; E=error), F@4, 116)=71.01, p<0.001, n,2=0.71
(Greenhouse-Geisser corrected for violation of the spheric-
ity assumption; €=0.48). Error cancellation was evident in
consistently shorter RDs for errors than for correct responses
(Figure 1B; 120ms vs. 142ms), £(29)=10.12, p<0.001, A=22ms,
95% CI,=[18ms, 27ms], d,=1.85, 95% Clg,=[1.25, 2.44]
(CIg,, = confidence interval for standardized means). A second
ANOVA on RTs also suggested pronounced differences across
the trial sequence, F(4,116)=48.79,p <0.001, np2 =0.63(e=0.76),
with significant pre-error speeding (RT ,—RT ; 443ms vs.
435ms), £(29)=3.92, p=0.001, A=7.88ms, 95% CI, =[3.77ms,
12.00ms], d,=0.71, 95% CI,, =[0.31, 1.11], and post-error slow-
ing (RT ,—RT,,; 460ms vs. 443ms), £(29)=7.29, p<0.001,
A=1771ms, 95% CI,=[12.74ms, 22.68ms], d,=1.33, 95%
Clg,,=[0.83, 1.82]. RD effects were independent of any RT dif-
ferences in within-participant analyses as well as across par-
ticipants (see the Section 3.2 below). These observations thus
reinforce the interpretation of error-related RD effects as ac-
tive error cancellation (Foerster et al. 2022; see Figure S1 and
Table S1 in the Supporting Information for converging evidence
from lateralized readiness potentials).

We thus split the data of each participant into responses with
RDs shorter and longer than the individual median RD—com-
puted separately for errors and correct responses—and tested
whether short versus long errors would give rise to different ERN
signatures in a first step. This was indeed the case, with consis-
tently larger ERN amplitudes for short errors (see Figure 1C-E;
—4.18uV vs. —1.16 uV), t(29)=3.66, p=0.001, A=3.02uV, 95%
CI,=[1.33uV, 4.71uV], d,=0.67, 95% Clg,=[0.27, 1.06] (de-
termined at electrode site FCz in the range [32ms, 82ms],
see Figures S2 and S3 and Tables S2-S7 in the Supporting
Information for full multi-electrode results). All but one of
the participants still showed a visible ERN signature in both
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FIGURE 3 | Model architecture and simulation results. (A) The model comprised three layers in a neural network. Excitatory connections were

effective between layers, whereas individual units within the same level inhibited each other. Separate units coded for the left and right response (L

vs. R) based on input in the central target (C) and the surrounding irrelevant stimuli (S). The figure shows only one surround unit in the input layer

and the attention layer for simplicity, though simulations used two independent surround units in each layer. Conflict was computed as the activation

product of both units in the response layer (Hopfield energy). Responses were registered whenever the activation of one unit surpassed a threshold

value, whereas response offset was registered when activation dropped below this threshold. (B) Residue-iteration decomposition (RIDE) of the sim-

ulated conflict into three distinct clusters relative to the response. Shaded areas indicate the standard error of paired differences for individual data
points based on 34 simulated datasets. The simulation results yielded a clear ERN-like signature in the R-Onset cluster, whereas the network did not

produce any systematic activity in the R-Offset cluster.

conditions; restricting the analysis to these individuals further
indicated that short errors came with a substantially earlier ERN
peak than long errors (52ms vs. 75ms), #(28)=6.67, p<0.001,
A=23ms, 95% CI,=[16ms, 30ms], d,=1.24, 95% CIg,=[0.75,
1.72] (see Tables S8 and S9 for full statistics). The spatiotemporal
evolution of the observed ERN followed its traditional frontocen-
tral scalp distribution along the vertex (Renault et al. 1980; see
Figure 1F). More negative voltages for short as compared to long
errors appeared across the central midline electrodes through-
out the ERN range, followed by a short period of increased error
positivity from 100 to 150ms after error commission (see also
Tables S10 and S11 in the Supporting Information for converg-
ing evidence from cluster-based permutation tests).

As the cancellation account predicts the ERN to be linked spe-
cifically to the individual offset of a response, we further per-
formed residue iteration decomposition (RIDE) analyses on the
single-trial EEG data (Ouyang et al. 2015). We configured the
algorithm to isolate three distinct clusters related to the onset
of the response (R-Onset cluster), the offset of the response
(R-Offset cluster), separated by an intermediate cluster (R-
Intermediate). We further implemented the algorithm in a max-
imally conservative fashion by ascribing shared variance of the
R-Onset and the R-Offset clusters to the former cluster. Despite
this conservative approach, RIDE analysis still revealed two
distinct ERN-like signatures related to response onset (correct:
9.13uV; error: —1.04uV), £#(29)=10.48, p<0.001, A=10.16uV,
95% CI,=[8.18uV, 12.15uV], d =191, 95% Clg,,=[1.30,
2.51], and to response offset (correct: 0.19 uV; error: —1.33 uV),
£(29)=5.12, p<0.001, A=1.51V, 95% CI,=[0.91uV, 2.12uV],
d,=0.93, 95% Clg,,=[0.50, 1.36], respectively (Figure 2a; using
a time window of [50ms, 100ms] post-response to account for
the later time course of the ERN in the R-Offset cluster). These
findings extend the condition-level observations to single-trial
variability of RDs, while follow-up analyses suggested that the

R-Onset and the R-Offset Cluster contribute independently to
the observed amplitude differences between errors with short
and long RDs (see Figures S4 and S5 and Tables S12 and S13
in the Supporting Information for full statistics). The ERN thus
cannot be explained by response onsets alone but is critically
dependent on the termination of erroneous motor activity.

3.2 | Additional Behavioral Results

For the behavioral results reported above, we computed error
cancellation effects as RD__,..—RD,. . ., with RD_ . being
the average of all four correct peri-error trials (E—2, E—1,
E+1, E+2; E=error trial, RD =response duration). Alternative
computational methods yielded the same pattern of results,
specifically when computing cancellation only against the
immediately preceding and following peri-error trial (120ms
vs. 142ms), £(29)=9.70, p<0.001, A=22ms, 95% CI,=[17ms,
27 ms|, dz:1.77, 95% Clg,,=[1.19, 2.34]. The same was true
when restricting the analysis to those trials that remained
after EEG artifact rejection (121ms vs. 143ms), #(29)=9.71,
p<0.001, A=22ms, 95% CI,=[18ms, 27ms], dZ=1.77, 95%
Clg,, =[1.19, 2.34].

Crucially, RD and RT were statistically independent of one an-
other, suggesting that RD effects do not reflect differences in
response initiation as captured by RT (nor do they depend on
peak force; Foerster et al. 2022; Gehring and Fencsik 1999).
Particularly, the average across-trial correlation of RD and
RT (re-transformed from averaged Fisher-Z transformed cor-
relations) was ¥ =-0.043 for errors and r=0.034 for correct
responses. Pre-error speeding and post-error slowing were
correlated on a trial-by-trial level, ¥=0.421, but neither RT-
based measure correlated with RD effects of error cancella-
tion I71<0.038. No significant across-participants correlations
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emerged between pre-error speeding, post-error slowing and
error cancellation either, |r| <0.113.

3.3 | Simulation Results

The model included three layers, closely mirroring the architec-
ture used in previous work (Yeung et al. 2004). The only major
difference to this previous model was that we only fed noise
into units that responded to surrounding irrelevant stimuli to
account for the fact that the irrelevant letters were not mapped
to any response in the present design, whereas the original
model was built for a design that included congruent and in-
congruent distractor stimuli, which also activated particular
input units directly. Repeating the simulation with a classical
parameterization of the model including response-congruent
and response-incongruent trials reproduced the reported data
pattern, however.

An input layer included four units coding for the presence of
stimuli that were associated with either a left-hand or right-hand
response in the center of the display (C) or among the surround-
ing stimuli (S). Units in the input layer projected to a response
layer that included one unit for the left-hand response (L) and
one unit for the right-hand response (R). The network calcu-
lated response conflict as measured via the parallel activation
of both response units (Hopfield energy). This measure fed into
a monitoring unit that was connected to an attention layer with
two units that allocated attention to the center or the surround,
respectively.

We simulated 34 datasets of 1248 trials each, as implemented in
the actual experiment. On each trial, we simulated the network
for 50 cycles, including 3 preparatory cycles, with each cycle cor-
responding to 16ms of actual time. The net input to all units
was set to 0 at the beginning of each run. Both response units
then received an input of ext,=0.03 during each of the three pre-
paratory cycles, scaled by a constant of extscale=0.4 applied to
all external inputs. Then, stimulus onset was defined as provid-
ing an additional external input of ext,=0.15 to one of the two
center units of the input layer. For each cycle, we computed the
net input to each unit i to determine its activation. In addition
to external inputs, the internal input was summed across all
connected units j, weighted by the connection strength w;; and a
scaling parameter intscale;:

input; = (ext; - extscale) + Z activation; - wy; - intscale; + &
J

The connection weights were w;=1.5 for feedforward excit-
atory connections from input units to response units, wij=2.0
for bidirectional excitatory connections between input units and
attention units. Pairwise inhibitory connections between all
individual units of the same layer were w;=-2.0 in the input
layer, w;=-3.0 in the response layer, and w;=-10 in the at-
tention layer. The scaling parameter was intscalej:0.0S for
excitatory connections and intscale,=0.12 for inhibitory con-
nections. Random noise € was added to all units on each cycle:

€ ~ N(0,0.035)

Crucially, the model captured conflict in terms of the Hopfield
energy of the response layer on every cycle with an additional
minimum bound at 0:

energy = max (0, — 2 - (activation, - activationy - w;))

Because both response units receive (noisy) activation in each
cycle, conflict arises for correct and erroneous responses alike.
The conflict signal is considerably stronger on error trials, how-
ever, and the difference between the response-locked conflict sig-
nal between erroneous and correct responses fits the ERN.

The model further included conflict adaptation as a function
of conflict in previous episodes (Botvinick et al. 2001; Carter
et al. 1998). To this end, we computed the total energy E for each
cycle as the sum across all timepoints of the present trial:

t
E, = 2 energy,
k=1

The total energy computed in one cycle directly fed into the at-
tention layer in terms of external input on the center unit in the
following cycle:

exte = A+ exteg_yy + (1= A) - (- Eyrey) + B)

with exXte g being the external input to this unit in the preced-
ing cycle and E,_, being the total energy of the response layer
in the previous cycle, scaled with scaling values of previous
instantiations of this model (1=0.5, «=4.41, §=1.08; Yeung
et al. 2004). External input to the center unit was further con-
strained at 1<ext.<3. We used two surround attention units
that both received input as a direct function of the external input
to the center unit:

extg = 0.5+ (3 —extc)

The activation of unit i depended on input; and a decay function:
Aactivation;

= (input; - (activation,; —activation, ) ) — (decay- (activation, — activation ) )
with activation_, = activation . =1.0 for input,>0 and activa-
tion ,;, =activation ;, =-0.2 otherwise. The boundaries of ac-
tivation were activation_, and activation , , respectively, and
the decay parameter was set to 0.1 throughout. Response onset
was determined whenever activation; or activation, exceeded a
threshold of 0.18 for the first time in a trial, whereas response
offset (and thus RD) was determined when the activation of the
unit went below this threshold again. Input to the model was
stopped at a random time after response onset sampled from a
normal distribution (u=6cycles, 0=0.5), with a lower bound at
5cycles.

Operationalizing RDs as the time that a response is activated
at suprathreshold level predicts shorter RDs for errors, because
errors receive strong lateral inhibition from the concurrently ac-
tivated correct unit in the response layer. Whether this intuitive
property of the model would translate into a distinct ERN signa-
ture locked to the offset of a response was a core question of the
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conducted simulations. The corresponding data yielded clear
evidence against this possibility as shown in Figure 3.

4 | Discussion

The present experiment carried two main discoveries. First, the
observation of systematically increased ERN amplitudes for re-
sponses of short relative to long duration and, second, distinct
ERN responses for the response onset cluster and for the re-
sponse offset cluster of the RIDE analyses. These observations
characterize the ERN as comprising at least two functionally
dissociable components, one related to the onset of erroneous
behavior and one related to its termination. Whereas the first,
passive component is well explained by previous mechanistic
accounts of the ERN in terms of conflict caused by the par-
allel activation of correct and erroneous action plans (Carter
et al. 1998; Botvinick et al. 2001; Gehring and Fencsik 2001;
Yeung et al. 2004) and in terms of reward prediction errors
(Holroyd and Coles 2002), the second, active component is
a unique index of active error cancellation. Indeed, a crucial
question is whether a response-offset-locked component of the
ERP would be predicted by common accounts of the ERN. This
is not the case. Reinforcement-learning accounts propose that
the ERN is linked to a reward prediction error that occurs when
an erroneous response leads to a decrease in the expected ac-
tion outcome, so that the ERN is “not directly tied to error com-
mission” (Holroyd and Coles 2002). Such an account cannot
explain the present results, because neither response duration
nor response offset is informative regarding the action out-
come. Whether the two components emerge from distinct neu-
roanatomical sources is an open question (Dehaene et al. 1994;
Carter et al. 1998; Gehring and Fencsik 2001). This architecture
highlights a critical role for immediate auto-cancellation of er-
roneous actions, indicating that the cancellation of erroneous
behavior is an instant, hard-wired corollary of error detection.
Error cancellation might further prepare the stage for efficient
error correction by performing the originally intended action
(P. M. A. Rabbitt 1966; Rodriguez-Fornells et al. 2002; Fiehler
et al. 2005; Bode and Stahl 2014; Roger et al. 2014; Beatty
et al. 2021).

Viewing the ERN as an index of error cancellation elegantly
integrates a range of classic findings such as higher ERN re-
sponses with increasing error significance (Hajcak et al. 2005;
Maier and Steinhauser 2013), as agents should be particularly
eager to cancel costly errors. Revisiting these classic find-
ings with a focus on error cancellation thus promises to solve
some of the long-standing mysteries surrounding this promi-
nent neurophysiological correlate of human error processing
(Cavanagh and Frank 2014; Gehring et al. 2018). This focus
also holds potential for refining clinical applications by as-
sessing whether abnormal ERN signatures mainly derive from
changes in terms of error detection or whether they relate to
abnormal error cancellation instead, thus promising a stronger
grasp on the neurophysiological operations underlying these
psychiatric conditions. Patients with Parkinson's disease, for
instance, show reduced ERN responses relative to control par-
ticipants, which has typically been seen as indicating deficient
performance monitoring (Falkenstein et al. 2001; Stemmer
et al. 2007; Beste et al. 2009, 2010). The present findings

indicate that these patients may have residual or even intact
error detection while not engaging in active cancellation of
erroneous motor action. This hypothesis would resonate with
common motor-related symptoms associated with Parkinson's
disease (Desmurget et al. 2004). Similarly, larger ERN re-
sponses for OCD patients relative to control participants may
indicate a strong impulse to cancel erroneous motor activity
rather than, or in addition to, overactive monitoring (Gehring
et al. 2000; Endrass et al. 2008). Similar hypotheses present
themselves for many other clinical conditions that are com-
monly seen as involving abnormal performance monitoring
(Olvet and Hajcak 2008).

On a broader scale, the present observations highlight the
promise of systematically assessing the termination of ongo-
ing actions. Behavioral measures such as RDs and electro-
physiological approaches such as analyses related to response
offset can be easily implemented in a wide variety of tasks in
healthy participants and clinical populations alike (Morein-
Zamir et al. 2004; Pfister et al. 2023). Moreover, sophisticated
experimental methodology has been developed to assess
the termination of action plans that have not yet been exe-
cuted (Verbruggen and Logan 2009; Verbruggen et al. 2019).
Adapting such methodology to study error cancellation holds
promise to arrive at a detailed understanding of this intriguing
process.
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respectively. Figure S2: Event-related potentials (ERPs), locked to re-
sponse onset (R). Figure S3: Event-related potentials (ERPs), locked
to response offset (R). Figure S4: Single-trial analyses of event-related
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analyses of event-related potentials for erroneous responses with short
and long response durations (RDs). Table S1: Results of cluster-based
permutation tests for differences between short and long response dura-
tions (RDs) in lateralized readiness potentials. Table S2: Mean ampli-
tude in the time-window of the error-related negativity (ERN), locked
to response onset. Table S3: Inferential results for the analyses of mean
amplitudes in the time-window of the error-related negativity (ERN),
locked to response onset. Table S4: Inferential results for the analyses
of mean amplitudes in the time-window of the error-related negativity
(ERN), locked to response onset, separately for correct and erroneous
responses (see Table S3 for the full design). Table S5: Comparison of
mean amplitudes in the time-window of the error-related negativity
(ERN) for errors with short versus long response duration (RD), locked
to response onset. Table S6: Peak amplitude of the largest negative peak
in the time-window of the error-related negativity (ERN), locked to re-
sponse onset. Table S7: Inferential statistics for peak amplitudes of the
largest negative peak in the time-window of the error-related negativ-
ity (ERN), locked to response onset. Table S8: Peak time of the largest
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locked to response onset. Table S9: Inferential statistics for peak times
of the largest negative peak in the time-window of the error-related neg-
ativity (ERN), locked to response onset. Table S10: Results of cluster-
based permutation tests for differences between errors with short
and long response durations (RDs) in event-related potentials (ERPs),
locked to response onset. Table S11: Results of cluster-based permuta-
tion tests for differences between errors with short and long response
durations (RDs) in event-related potentials (ERPs), locked to response
offset. Table S12: Results of cluster-based permutation tests for differ-
ences between erroneous and correct responses in a residue-iteration
decomposition (RIDE) of the data. Table S13: Results of cluster-based
permutation tests for differences between errors with short and long re-
sponse durations (RDs) in a residue-iteration decomposition (RIDE) of
the data.
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