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ABSTRACT
The error-related negativity (ERN) is a classic electrophysiological index of error detection. However, the present study challenges 
its classical functional interpretation by analyzing the ERN relative to the termination of erroneous actions (response offsets), 
a behavioral marker of error cancellation. Our findings reveal that the ERN reflects immediate auto-cancellation of ongoing 
erroneous behavior. Specifically, our findings corroborate that erroneous responses come with significantly shortened response 
durations (RDs) compared to correct responses, pointing to an immediate and active cancellation of ongoing motor activity. 
Crucially, ERN amplitude and latency varied with RDs, indicating that the ERN may reflect not only passive error detection 
but also the autonomous implementation of corrective behavior. These observations portray human performance monitoring 
as consisting of two components: a passive component related to detecting action slips, and an active component related to the 
implementation of behavioral changes. Moreover, these results carry important clinical implications. Abnormal ERN patterns 
observed in conditions such as obsessive-compulsive disorder, anxiety, and Parkinson's disease may stem not solely from im-
paired error detection but from disrupted regulation and cancellation of erroneous actions. By integrating behavioral dynamics 
with electrophysiological measures, our study highlights the need to reconsider the functional significance of the ERN in both 
cognitive neuroscience and clinical contexts.

1   |   Introduction

To err is human, but every single action slip is critical and needs 
to be detected as fast as possible. Human neurophysiology has 
linked fast and efficient error detection to a distinct event-related 
potential peaking within only 100 milliseconds after error com-
mission (Renault et  al.  1980; Gehring et  al.  1993; Falkenstein 
et al. 1990). This error-related negativity (ERN) is often seen as 
the initial step of performance monitoring, preparing the ground 
for later error correction and strategic adaptation of cognitive 
processing (Ridderinkhof et al. 2004; Logan and Crump 2010; 

Danielmeier and Ullsperger 2011; Maier et al. 2011; Wessel and 
Aron 2017; Dehaene 2018). It also comes with direct clinical im-
plications (Olvet and Hajcak 2008), as abnormal error detection 
is associated with conditions such as obsessive-compulsive dis-
order (Gehring et al. 2000), anxiety and depression (Holmes and 
Pizzagalli 2008), Parkinson's disease (Beste et al. 2010), as well 
as schizophrenia (Foti et al. 2012).

While the significance of the ERN in error-processing has been 
explored for decades at this point, earlier studies have tended to 
overlook the behavioral indicators associated with the ERN (see 
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also Kieffaber et al. 2023). Past studies have predominantly em-
ployed experimental designs that limit participant responses to 
discrete key presses, focusing on solely response initiation as op-
posed to response termination (but see Pfister et al. 2023). This 
approach blurs the distinction between the onset and conclusion 
of an action, making it difficult to observe real-time processes 
such as error monitoring and correction (Kieffaber et al. 2023). 
Nonetheless, some approaches tried to address this limitation by 
either examining “partial errors” in which an error is initiated 
but a correct response is ultimately given (Vidal et al. 2003; Burle 
et  al.  2008; Masaki et  al.  2007; Pailing and Segalowitz  2004; 
Carbonnell and Falkenstein 2006), or by analyzing continuous 
movements, such as mouse trajectories (Kieffaber et  al.  2016, 
2023; Rodrıǵuez-Fornells et  al.  2002). This research suggests 
that the latency of the ERN is strongly correlated with the peak 
deceleration of the initiated movement prior to response correc-
tion (Kieffaber et al. 2023; Tafuro et al. 2020). In line with these 
results, recent behavioral observations of immediate error can-
cellation even for short-lived keypress actions suggest a funda-
mentally different reading of the ERN's functional significance 
(Hochman et al. 2017; Foerster et al. 2022): A distinct ERN sig-
nature might in fact originate from immediate efforts to cancel 
ongoing erroneous movements on the fly rather than reflecting 
prediction errors or response conflict as previously assumed. 
However, these behavioral results (e.g., Foerster et al. 2022) were 
not accompanied by neurophysiological measures to substan-
tiate this inference. Therefore, we hypothesized that stronger 

behavioral evidence for active cancellation predicts larger ERN 
amplitudes, shorter ERN latencies, and a distinct contribution of 
response offset to electrophysiological activity.

We probed for this possibility by measuring electroencephalo-
graphic (EEG) activity in an effective sample of 30 healthy par-
ticipants while they performed an error-eliciting choice-response 
task. This task required speeded left versus right responses to 
target letters that were displayed on screen (Figure 1A; see the 
Supporting Information for details). Irrelevant letter stimuli 
surrounded the target; they were not mapped to any response 
but yielded visual noise, and a strict response deadline ensured 
that participants would commit sufficiently many errors. For 
each response, we measured its onset (response time, RT), and 
crucially its offset, to determine response duration (RD; i.e., the 
time between pressing and releasing the key, Pfister et al. 2023).

Both measures come with a unique pattern surrounding erro-
neous actions. RTs decrease prior to error commission (pre-
error speeding), and they markedly increase following an error 
(post-error slowing; Dudschig and Jentzsch 2009; Jackson and 
Balota  2012; Pfister and Foerster  2022). The interplay of pre-
error speeding and post-error slowing has been suggested to 
reflect a shift in decision criteria with impulsive responding 
immediately before error commission and cautious respond-
ing following error commission (Jentzsch and Dudschig 2009; 
Danielmeier and Ullsperger  2011; Hoffmann and Beste  2015; 

FIGURE 1    |    Experimental design and aggregate results. (A) Participants classified a central letter stimulus with left versus right keypresses. 
Additional irrelevant letter stimuli added visual noise, and a strict response deadline of 600 ms ensured that the task elicited sufficiently many errors 
for analysis. (B) Response times (RTs) and response durations (RDs) for commission errors (E) and correct peri-error trials. Error bars indicate 95% 
confidence intervals for paired differences (CIPD) relative to the immediately preceding response. Commission errors came with systematically re-
duced RDs, indicating active error cancellation. (C) Event-related potentials at electrode site FCz, time-locked to response onset (R). Data for correct 
responses and errors were split at their median RD across trials to investigate the impact of error cancellation on the error-related negativity (ERN), 
with response offsets ± standard error shown as point overlays. (D) Mean amplitudes (left; time window: [32 ms, 82 ms] post-error) and peak times 
(right) at electrode FCz with corresponding standard errors of paired differences (SEPD; see the Supporting Information for multi-electrode results). 
(E) Individual ERN waveforms for short and long errors relative to correct responses, including their spatial topography. (F) Temporal evolution of 
the ERN and the difference between short and long errors across the vertex electrodes.
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Steinhauser et al. 2017). Post-error slowing further captures at-
tentional distraction (Notebaert et al. 2009), and it is especially 
pronounced when erroneous responses cannot be corrected, in-
dicating sustained processing of potential correction responses 
(P. M. A. Rabbitt 1966; Crump and Logan 2013).

Recent observations pointed towards a diverging pattern for 
RDs, with particularly short RDs for erroneous responses 
as compared to all correct responses surrounding the error 
(Hochman et  al.  2017; Foerster et  al.  2022). This pattern is 
stable across the entire RT distribution and cannot be ex-
plained in terms of other biomechanical differences such 
as reduced force of erroneous responses (P. Rabbitt  1978; 
Foerster et al. 2022). Further, shortened RDs for erroneous re-
sponses arose mainly after a response reached its peak force. 
Together, the findings for RDs therefore indicate immediate 
and active cancellation or termination of ongoing motor activ-
ity. We thus assessed electrophysiological activity as a func-
tion of RD to explore the neurophysiological underpinnings of 
error cancellation. To this end, we split the data into responses 
with short versus long RDs, predicting a particularly strong 
impact of error cancellation for short durations. We then fol-
lowed up on this coarse-grained procedure by computing a 
residue-iteration decomposition (RIDE) analysis to elucidate 
the unique contribution of response offsets to ongoing electro-
physiological activity.

2   |   Materials and Methods

2.1   |   Power Analysis, Sample Size, and Participant 
Demographics

The ERN is a highly reliable component of the event-related 
potential (ERP) that is readily observed in single-subject data. 
Similarly, large error cancellation effects on RDs have recently 
been reported (dz = 1.34; Foerster et al. 2022). We therefore based 
our sample size on a conservative power analysis assuming a ge-
neric medium effect size of dz = 0.50 (power 1-β = 0.80, α = 0.05), 
suggesting a sample size of 34 participants. This sample size 
ensures a power of 1-β > 0.99 for detecting previous RD effects. 
We preregistered this target sample size on the Aspredicted plat-
form (https://​aspre​dicted.​org/​LR9_​JJL).

An initial sample of N = 34 participants was recruited through 
advertisements in the local participant recruitment system. 
Their mean age was 28.53 years (range: 20–64 years). Nine par-
ticipants self-identified as male, 25 as female, 3 as left-handed, 
29 as right-handed, and 2 as ambidextrous. All participants 
reported normal or corrected-to-normal visual acuity. The 
study was conducted in accordance with the guidelines of the 
ethics committee of the Institute of Psychology, University of 
Würzburg, Germany. We did not seek individual approval for 
this study protocol for using a mundane choice response task 
with healthy participants. All participants provided written in-
formed consent before participation.

The data of four participants had to be excluded from the analy-
sis: Three datasets did not match our pre-determined inclusion 
criteria of at least 10 usable trials per condition, and one data-
set had missing data in the electrooculogram (EOG) readings, 

which did not allow for meaningful correction of blink and eye-
movement artifacts. The effective sample size of 30 participants 
still came with a power of 1-β > 0.99 for standard ERN analysis 
and behavioral error cancellation effects alike.

2.2   |   Apparatus and Electrophysiological 
Recording

Participants completed the task in an electrically shielded cham-
ber. Stimuli appeared on a 17“ monitor (75 Hz), and participants 
responded with their left and right index fingers on the two lat-
eral keys of a PST Chronos device (Psychology Software Tools; 
Sharpsburg, PA, USA; the first author thanks PST for sponsor-
ing the device as part of their E-Prime Challenge 2019). This 
setup allowed us to record response onsets and offsets with ≤ 1 
millisecond precision, thus yielding precise estimates of the cor-
responding RDs.

We recorded EEG activity with a BrainVision QuickAmp am-
plifier with 32 active electrodes (actiCAP; Brain Products, 
Germany). Electrode sites were arranged according to the inter-
national 10–20 system, with electrodes placed at FP1, FP2, F7, 
F3, Fz, F4, F8, FCz, FC1, FC2, AFz, T7, C3, Cz, C4, T8, TP9, 
CP1, CP2, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10, as 
well as the left and right mastoids (M1, M2). The EEG signal 
was recorded using average reference with a sampling rate of 
1000 Hz and impedances < 10 kΩ.

Additional passive electrodes above and below the left eye, 
as well as at the outer canthi of both eyes tracked the verti-
cal and horizontal electrooculogram (EOG) to control for eye 
movements.

2.3   |   Task

Participants responded to one of four target letters on every trial 
with a left versus right keypress. The letters R and N mapped 
to one response, whereas V and K mapped to the other re-
sponse, with counterbalanced mapping of the two letter pairs 
to responses across participants. The target letter appeared cen-
trally in a grid of 3 × 3 characters. The other eight characters 
displayed one of eight irrelevant letters that did not map onto 
any response (i.e., O, W, X, U, Z, Y, H, or A; all eight irrelevant 
letters had the same identity on each trial). We instructed partic-
ipants to ignore the irrelevant letters and inserted these stimuli 
only to elicit errors through perceptual noise. All letters were 
displayed in white font on a black background. The combination 
of four target letters and eight irrelevant letters, respectively, 
resulted in 32 individual stimulus constellations. In an initial 
practice block, participants went through a random order of 
these combinations. In the following 19 experimental blocks, 
each combination appeared twice at a random position in the 
block, resulting in 64 trials per block. Blocks were separated 
by self-paced breaks, during which a written message encour-
aged participants to respond as fast and accurately as possible 
throughout the experiment.

The first trial of each block started with a fixation of 750 ms. 
Then the target letter appeared for a maximum of 600 ms, 
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which disappeared when participants responded before that 
deadline. Participants immediately received feedback about 
the accuracy of each response for 1000 ms in the practice 
block (translated from German: “Good!” in green font for cor-
rect responses; “Wrong!” in red font for incorrect keypresses 
and “Too slow!” in red font if they omitted their response). 
Participants only received feedback for omission errors in ex-
perimental blocks, but no feedback for correct responses or 
commission errors. However, we provided aggregate feed-
back about the mean correct RT, the number of incorrect 
keypresses, and the number of omission errors after each 
block. Afterward, a white fixation cross appeared centrally for 
500 ms, and then the screen went blank for 1000 ms. We con-
tinued to collect key presses and releases after target presen-
tation to measure RD and to identify and exclude trials with 
late additional responses (labeled miscellaneous errors in the 
following).

2.4   |   Data Preprocessing

All preprocessing and analysis steps were implemented via cus-
tom R scripts (using the packages ez, doBy, MBESS, and schoRsch) 
as well as custom Matlab code that utilized the FieldTrip toolbox 
(Oostenveld et  al.  2010). All scripts are available on the Open 
Science Framework (https://​osf.​io/​4vncf/​​).

For the behavioral data, we first removed all trials of the prac-
tice block. We then searched through the data and selected 
all trials with commission errors (10.09% of all trials; miscel-
laneous errors with anticipative responses or more than one 
keypress: 0.34%; omission errors: 8.64%). From these trials, we 
selected only those commission errors with two preceding cor-
rect trials and two following correct trials. We departed from 
our pre-registered plans of using only ±1 correct peri-error tri-
als for the behavioral analysis to be able to compute pre-error 
speeding and post-error slowing relative to close peri-error tri-
als (Pfister and Foerster  2022; using the trial selection of the 
EEG analysis produced virtually identical results for all follow-
ing RD analyses):

We screened the data for outliers as defined by RD deviating 
more than 2.5 standard deviations (SDs) from the correspond-
ing cell mean, computed separately for correct and erroneous 
responses of each participant (1.34%). To retain a balanced data-
set, we removed each chunk of error and its accompanying ±2 
correct peri-error trials when detecting at least one outlier in the 
sequence, removing 5.96% of the error sequences.

For the remaining data, we determined for each trial whether its 
RD was shorter or longer than the condition median, again cal-
culated separately for correct and erroneous responses of each 
participant. RDs exactly matching the median were assigned to 
the slower bin.

EEG preprocessing used all error trials that came with at 
least one preceding correct trial. We first read trial segments 
of 1200 ms around the event of interest (stimulus onset, re-
sponse onset, response offset) and baseline-corrected each 
epoch (stimulus-locked baseline: [−100 ms, 0 ms]; response-
onset baseline: [−150 ms, −50 ms]; response-offset baseline: 
[−300 ms, −200 ms]). We then applied a band-stop filter to re-
move line noise ([47.5 Hz, 52.5 Hz]) using FieldTrip's 4th order 
forward-backward Butterworth infinite impulse response 
(IIR) filter, and subjected the resulting data to the artifact 
detection routines of FieldTrip based on the average z-value 
of the signal amplitude (Hilbert envelope) across electrodes 
( jump artifacts: cutoff = 20; muscle artifacts: cutoff = 8 with 
band-pass filter at [110 Hz, 140 Hz]). Epochs containing at 
least one artifact were removed from the data (12.56% of the 
trials).

To avoid biases due to different trial numbers after artifact 
rejection, we assessed the frequency of the remaining short 
and long error trials in each dataset and removed trials with 
RDs closest to the median RD of the condition with more data 
points until both conditions had identical trial numbers (re-
sulting in 19.43 remaining error trials per RD condition on 
average).

The final selection of trials then entered a correction for blink 
and eye movement artifacts based on independent component 
analysis (ICA). After ICA decomposition, we removed com-
ponents that correlated with either EOG channel (threshold: 
r = 0.40) and recomposed the data. We then re-referenced the 
data to linked mastoids, re-applied the corresponding baseline 
corrections, and filtered the final data at 0.1 Hz high-pass and 
20 Hz low-pass (both 4th order).

The described preprocessing algorithm applied to all main anal-
yses. Adjustments of these general procedures were only im-
plemented for analyses using RIDE analyses and for analyses 
assessing the lateralized readiness potential (LRP). For our ini-
tial RIDE analysis, we collapsed the data across RD bins, because 
this single-trial analysis leverages the trial-by-trial variability 
of different signal components (here: response onset versus re-
sponse offset) and therefore does not require any prior binning. 
This analysis was complemented by separate RIDE analyses of 
short and long errors to assess amplitude effects in addition to 
the latency focus of the initial RIDE analysis. For both appli-
cations of the RIDE algorithm we tested whether a decompo-
sition into 3 clusters was warranted over a solution with only 
two clusters (R-Onset and R-Offset without an R-Intermediate 
cluster in between; with R = response). Even though the crucial 
observation of a distinct ERN response in the R-Offset clus-
ter emerged in 2- and 3-cluster solution alike, the intermedi-
ate cluster turned out to capture the distinct PE component of 
the ERP (e.g., Nieuwenhuis et al. 2001; Overbeek et al. 2005), 
so that we chose to implement all three clusters (see Figure 2; 
the PE was located in the R-Offset cluster for two-cluster solu-
tions). We further ensured that RDs introduced a temporal jitter 
with sufficiently meaningful variation as compared to response 
times. This was indeed the case as suggested by analyses of 
Coefficients of Variation (CV) with CVRD even exceeding CVRT 
for correct responses and errors alike, t(33) > 4.55, ps < 0.001, 
dz > 0.83. LRP analysis additionally split the data according to 

Pre−error speeding=

(

RTE−2+RTE+2
)

2
−RTE−1

Post−error slowing=RTE+1−

(

RTE−2+RTE+2
)

2
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the actual response (left vs. right) in order to compute the LRP. 
We restricted this analysis to a subset of 15 participants with at 
least 15 trials per error type and did not enforce equal trial num-
bers per condition to be able to compute meaningful LRP statis-
tics. We verified that the subset of participants showed similar 
ERP responses as the full sample to establish that potential LRP 
results do not reflect specific properties of the selected sub-set.

2.5   |   Simulations

Finally, we implemented a computational model to test whether 
the observed ERN signature locked to response-offsets can be 
explained by conflict-monitoring theories of the ERN (Carter 
et  al.  1998; Botvinick et  al.  2001; Gehring and Fencsik  2001; 
Yeung et  al.  2004). Conflict-monitoring accounts explain the 
ERN as reflecting conflict that is triggered by the parallel ac-
tivation of competing action plans. In this computational for-
mulation, conflict is proportional to the activation product of 
two competing response nodes in a recurrent neural network 
(the Hopfield energy; Botvinick et al. 2001; Yeung et al. 2004). 
Simulations with this model provide an elegant account for the 
ERN signature being tied to the preparation and onset of er-
roneous actions. To determine whether they can also account 
for offset-locked activity, we implemented a variant of the con-
flict monitoring model (Yeung et al. 2004) that we adapted to 
the present task. Figure  3 provides a schematic of the model 
architecture.

3   |   Results

3.1   |   Main Findings

A mean error rate of 10.3% (SD = 4.1%) for commission errors 
confirmed that the task succeeded in eliciting sufficiently many 
commission errors for meaningful analysis. All other potential 
errors such as response omissions or multiple responses within a 
single trial accounted for another 11.2% of the trials (SD = 7.4%).

Figure 1B shows both behavioral measures, i.e., RDs and RTs, 
for erroneous responses, the two correct responses preceding 
an error, and the two correct responses following this error. 
A repeated-measures analysis of variance (ANOVA) on mean 
RDs yielded a significant effect of trial sequence (E−2, E−1, 
E, E+1, E+2; E = error), F(4, 116) = 71.01, p < 0.001, np

2 = 0.71 
(Greenhouse–Geisser corrected for violation of the spheric-
ity assumption; ε = 0.48). Error cancellation was evident in 
consistently shorter RDs for errors than for correct responses 
(Figure 1B; 120 ms vs. 142 ms), t(29) = 10.12, p < 0.001, Δ = 22 ms, 
95% CIΔ = [18 ms, 27 ms], dz = 1.85, 95% CISM = [1.25, 2.44] 
(CISM = confidence interval for standardized means). A second 
ANOVA on RTs also suggested pronounced differences across 
the trial sequence, F(4, 116) = 48.79, p < 0.001, np

2 = 0.63 (ε = 0.76), 
with significant pre-error speeding (RTE±2—RTE-1; 443 ms vs. 
435 ms), t(29) = 3.92, p = 0.001, Δ = 7.88 ms, 95% CIΔ = [3.77 ms, 
12.00 ms], dz = 0.71, 95% CISM = [0.31, 1.11], and post-error slow-
ing (RTE-1—RTE±2; 460 ms vs. 443 ms), t(29) = 7.29, p < 0.001, 
Δ = 17.71 ms, 95% CIΔ = [12.74 ms, 22.68 ms], dz = 1.33, 95% 
CISM = [0.83, 1.82]. RD effects were independent of any RT dif-
ferences in within-participant analyses as well as across par-
ticipants (see the Section  3.2 below). These observations thus 
reinforce the interpretation of error-related RD effects as ac-
tive error cancellation (Foerster et al. 2022; see Figure S1 and 
Table S1 in the Supporting Information for converging evidence 
from lateralized readiness potentials).

We thus split the data of each participant into responses with 
RDs shorter and longer than the individual median RD—com-
puted separately for errors and correct responses—and tested 
whether short versus long errors would give rise to different ERN 
signatures in a first step. This was indeed the case, with consis-
tently larger ERN amplitudes for short errors (see Figure 1C–E; 
−4.18 μV vs. −1.16 μV), t(29) = 3.66, p = 0.001, Δ = 3.02 μV, 95% 
CIΔ = [1.33 μV, 4.71 μV], dz = 0.67, 95% CISM = [0.27, 1.06] (de-
termined at electrode site FCz in the range [32 ms, 82 ms], 
see Figures  S2 and S3 and Tables  S2–S7 in the Supporting 
Information for full multi-electrode results). All but one of 
the participants still showed a visible ERN signature in both 

FIGURE 2    |    Single-trial analyses for erroneous and correct responses. (A) Residue-iteration decomposition (RIDE) of the signal at electrode FCz 
into three distinct clusters, with marked error-related negativity (ERN) in the response onset cluster and the response offset cluster (R = response). 
Shaded areas indicate standard errors of paired differences between correct and erroneous responses, whereas horizontal bars show significant 
differences as indicated by permutation tests. Intriguingly, only errors elicited reliable activity in the response offset cluster, reinforcing the active 
cancellation account. (B) Topographies for the difference wave (Error − Correct) for both clusters that contributed to the ERN (R-Onset, R-Offset). 
Timestamps mark the beginning of each time window of 50 ms.
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conditions; restricting the analysis to these individuals further 
indicated that short errors came with a substantially earlier ERN 
peak than long errors (52 ms vs. 75 ms), t(28) = 6.67, p < 0.001, 
Δ = 23 ms, 95% CIΔ = [16 ms, 30 ms], dz = 1.24, 95% CISM = [0.75, 
1.72] (see Tables S8 and S9 for full statistics). The spatiotemporal 
evolution of the observed ERN followed its traditional frontocen-
tral scalp distribution along the vertex (Renault et al. 1980; see 
Figure 1F). More negative voltages for short as compared to long 
errors appeared across the central midline electrodes through-
out the ERN range, followed by a short period of increased error 
positivity from 100 to 150 ms after error commission (see also 
Tables S10 and S11 in the Supporting Information for converg-
ing evidence from cluster-based permutation tests).

As the cancellation account predicts the ERN to be linked spe-
cifically to the individual offset of a response, we further per-
formed residue iteration decomposition (RIDE) analyses on the 
single-trial EEG data (Ouyang et al. 2015). We configured the 
algorithm to isolate three distinct clusters related to the onset 
of the response (R-Onset cluster), the offset of the response 
(R-Offset cluster), separated by an intermediate cluster (R-
Intermediate). We further implemented the algorithm in a max-
imally conservative fashion by ascribing shared variance of the 
R-Onset and the R-Offset clusters to the former cluster. Despite 
this conservative approach, RIDE analysis still revealed two 
distinct ERN-like signatures related to response onset (correct: 
9.13 μV; error: −1.04 μV), t(29) = 10.48, p < 0.001, Δ = 10.16 μV, 
95% CIΔ = [8.18 μV, 12.15 μV], dz = 1.91, 95% CISM = [1.30, 
2.51], and to response offset (correct: 0.19 μV; error: −1.33 μV), 
t(29) = 5.12, p < 0.001, Δ = 1.51 μV, 95% CIΔ = [0.91 μV, 2.12 μV], 
dz = 0.93, 95% CISM = [0.50, 1.36], respectively (Figure 2a; using 
a time window of [50 ms, 100 ms] post-response to account for 
the later time course of the ERN in the R-Offset cluster). These 
findings extend the condition-level observations to single-trial 
variability of RDs, while follow-up analyses suggested that the 

R-Onset and the R-Offset Cluster contribute independently to 
the observed amplitude differences between errors with short 
and long RDs (see Figures  S4 and S5 and Tables  S12 and S13 
in the Supporting Information for full statistics). The ERN thus 
cannot be explained by response onsets alone but is critically 
dependent on the termination of erroneous motor activity.

3.2   |   Additional Behavioral Results

For the behavioral results reported above, we computed error 
cancellation effects as RDcorrect—RDerror, with RDcorrect being 
the average of all four correct peri-error trials (E−2, E−1, 
E+1, E+2; E = error trial, RD = response duration). Alternative 
computational methods yielded the same pattern of results, 
specifically when computing cancellation only against the 
immediately preceding and following peri-error trial (120 ms 
vs. 142 ms), t(29) = 9.70, p < 0.001, Δ = 22 ms, 95% CIΔ = [17 ms, 
27 ms], dz = 1.77, 95% CISM = [1.19, 2.34]. The same was true 
when restricting the analysis to those trials that remained 
after EEG artifact rejection (121 ms vs. 143 ms), t(29) = 9.71, 
p < 0.001, Δ = 22 ms, 95% CIΔ = [18 ms, 27 ms], dz = 1.77, 95% 
CISM = [1.19, 2.34].

Crucially, RD and RT were statistically independent of one an-
other, suggesting that RD effects do not reflect differences in 
response initiation as captured by RT (nor do they depend on 
peak force; Foerster et  al.  2022; Gehring and Fencsik 1999). 
Particularly, the average across-trial correlation of RD and 
RT (re-transformed from averaged Fisher-Z transformed cor-
relations) was r = −0.043 for errors and r = 0.034 for correct 
responses. Pre-error speeding and post-error slowing were 
correlated on a trial-by-trial level, r = 0.421, but neither RT-
based measure correlated with RD effects of error cancella-
tion |r| < 0.038. No significant across-participants correlations 

FIGURE 3    |    Model architecture and simulation results. (A) The model comprised three layers in a neural network. Excitatory connections were 
effective between layers, whereas individual units within the same level inhibited each other. Separate units coded for the left and right response (L 
vs. R) based on input in the central target (C) and the surrounding irrelevant stimuli (S). The figure shows only one surround unit in the input layer 
and the attention layer for simplicity, though simulations used two independent surround units in each layer. Conflict was computed as the activation 
product of both units in the response layer (Hopfield energy). Responses were registered whenever the activation of one unit surpassed a threshold 
value, whereas response offset was registered when activation dropped below this threshold. (B) Residue-iteration decomposition (RIDE) of the sim-
ulated conflict into three distinct clusters relative to the response. Shaded areas indicate the standard error of paired differences for individual data 
points based on 34 simulated datasets. The simulation results yielded a clear ERN-like signature in the R-Onset cluster, whereas the network did not 
produce any systematic activity in the R-Offset cluster.
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emerged between pre-error speeding, post-error slowing and 
error cancellation either, |r| < 0.113.

3.3   |   Simulation Results

The model included three layers, closely mirroring the architec-
ture used in previous work (Yeung et al. 2004). The only major 
difference to this previous model was that we only fed noise 
into units that responded to surrounding irrelevant stimuli to 
account for the fact that the irrelevant letters were not mapped 
to any response in the present design, whereas the original 
model was built for a design that included congruent and in-
congruent distractor stimuli, which also activated particular 
input units directly. Repeating the simulation with a classical 
parameterization of the model including response-congruent 
and response-incongruent trials reproduced the reported data 
pattern, however.

An input layer included four units coding for the presence of 
stimuli that were associated with either a left-hand or right-hand 
response in the center of the display (C) or among the surround-
ing stimuli (S). Units in the input layer projected to a response 
layer that included one unit for the left-hand response (L) and 
one unit for the right-hand response (R). The network calcu-
lated response conflict as measured via the parallel activation 
of both response units (Hopfield energy). This measure fed into 
a monitoring unit that was connected to an attention layer with 
two units that allocated attention to the center or the surround, 
respectively.

We simulated 34 datasets of 1248 trials each, as implemented in 
the actual experiment. On each trial, we simulated the network 
for 50 cycles, including 3 preparatory cycles, with each cycle cor-
responding to 16 ms of actual time. The net input to all units 
was set to 0 at the beginning of each run. Both response units 
then received an input of exti = 0.03 during each of the three pre-
paratory cycles, scaled by a constant of extscale = 0.4 applied to 
all external inputs. Then, stimulus onset was defined as provid-
ing an additional external input of exti = 0.15 to one of the two 
center units of the input layer. For each cycle, we computed the 
net input to each unit i to determine its activation. In addition 
to external inputs, the internal input was summed across all 
connected units j, weighted by the connection strength wij and a 
scaling parameter intscalej:

The connection weights were wij = 1.5 for feedforward excit-
atory connections from input units to response units, wij = 2.0 
for bidirectional excitatory connections between input units and 
attention units. Pairwise inhibitory connections between all 
individual units of the same layer were wij = −2.0 in the input 
layer, wij = −3.0 in the response layer, and wij = −1.0 in the at-
tention layer. The scaling parameter was intscalej = 0.08 for 
excitatory connections and intscalej = 0.12 for inhibitory con-
nections. Random noise ε was added to all units on each cycle:

Crucially, the model captured conflict in terms of the Hopfield 
energy of the response layer on every cycle with an additional 
minimum bound at 0:

Because both response units receive (noisy) activation in each 
cycle, conflict arises for correct and erroneous responses alike. 
The conflict signal is considerably stronger on error trials, how-
ever, and the difference between the response-locked conflict sig-
nal between erroneous and correct responses fits the ERN.

The model further included conflict adaptation as a function 
of conflict in previous episodes (Botvinick et  al.  2001; Carter 
et al. 1998). To this end, we computed the total energy E for each 
cycle as the sum across all timepoints of the present trial:

The total energy computed in one cycle directly fed into the at-
tention layer in terms of external input on the center unit in the 
following cycle:

with extC(t-1) being the external input to this unit in the preced-
ing cycle and Et-1 being the total energy of the response layer 
in the previous cycle, scaled with scaling values of previous 
instantiations of this model (λ = 0.5, α = 4.41, β = 1.08; Yeung 
et al. 2004). External input to the center unit was further con-
strained at 1 ≤ extC ≤ 3. We used two surround attention units 
that both received input as a direct function of the external input 
to the center unit:

The activation of unit i depended on inputi and a decay function:

with activationcrit = activationmax = 1.0 for inputi > 0 and activa-
tioncrit = activationmin = −0.2 otherwise. The boundaries of ac-
tivation were activationmin and activationmax, respectively, and 
the decay parameter was set to 0.1 throughout. Response onset 
was determined whenever activationL or activationR exceeded a 
threshold of 0.18 for the first time in a trial, whereas response 
offset (and thus RD) was determined when the activation of the 
unit went below this threshold again. Input to the model was 
stopped at a random time after response onset sampled from a 
normal distribution (μ = 6 cycles, σ = 0.5), with a lower bound at 
5 cycles.

Operationalizing RDs as the time that a response is activated 
at suprathreshold level predicts shorter RDs for errors, because 
errors receive strong lateral inhibition from the concurrently ac-
tivated correct unit in the response layer. Whether this intuitive 
property of the model would translate into a distinct ERN signa-
ture locked to the offset of a response was a core question of the 

inputi =
(

exti ⋅ extscale
)

+

∑

j

activationj ⋅ wij ⋅ intscalej + �

� ∼ N(0, 0.035)

energy =max
(

0, − 2 ⋅
(

activationL ⋅ activationR ⋅ wij

))

Et =

t
∑

k= 1

energyk
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� ⋅ E
(cycle−1) + �
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−
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conducted simulations. The corresponding data yielded clear 
evidence against this possibility as shown in Figure 3.

4   |   Discussion

The present experiment carried two main discoveries. First, the 
observation of systematically increased ERN amplitudes for re-
sponses of short relative to long duration and, second, distinct 
ERN responses for the response onset cluster and for the re-
sponse offset cluster of the RIDE analyses. These observations 
characterize the ERN as comprising at least two functionally 
dissociable components, one related to the onset of erroneous 
behavior and one related to its termination. Whereas the first, 
passive component is well explained by previous mechanistic 
accounts of the ERN in terms of conflict caused by the par-
allel activation of correct and erroneous action plans (Carter 
et  al.  1998; Botvinick et  al.  2001; Gehring and Fencsik  2001; 
Yeung et  al.  2004) and in terms of reward prediction errors 
(Holroyd and Coles  2002), the second, active component is 
a unique index of active error cancellation. Indeed, a crucial 
question is whether a response-offset-locked component of the 
ERP would be predicted by common accounts of the ERN. This 
is not the case. Reinforcement-learning accounts propose that 
the ERN is linked to a reward prediction error that occurs when 
an erroneous response leads to a decrease in the expected ac-
tion outcome, so that the ERN is “not directly tied to error com-
mission” (Holroyd and Coles  2002). Such an account cannot 
explain the present results, because neither response duration 
nor response offset is informative regarding the action out-
come. Whether the two components emerge from distinct neu-
roanatomical sources is an open question (Dehaene et al. 1994; 
Carter et al. 1998; Gehring and Fencsik 2001). This architecture 
highlights a critical role for immediate auto-cancellation of er-
roneous actions, indicating that the cancellation of erroneous 
behavior is an instant, hard-wired corollary of error detection. 
Error cancellation might further prepare the stage for efficient 
error correction by performing the originally intended action 
(P. M. A. Rabbitt 1966; Rodrıǵuez-Fornells et al. 2002; Fiehler 
et  al.  2005; Bode and Stahl  2014; Roger et  al.  2014; Beatty 
et al. 2021).

Viewing the ERN as an index of error cancellation elegantly 
integrates a range of classic findings such as higher ERN re-
sponses with increasing error significance (Hajcak et al. 2005; 
Maier and Steinhauser 2013), as agents should be particularly 
eager to cancel costly errors. Revisiting these classic find-
ings with a focus on error cancellation thus promises to solve 
some of the long-standing mysteries surrounding this promi-
nent neurophysiological correlate of human error processing 
(Cavanagh and Frank  2014; Gehring et  al.  2018). This focus 
also holds potential for refining clinical applications by as-
sessing whether abnormal ERN signatures mainly derive from 
changes in terms of error detection or whether they relate to 
abnormal error cancellation instead, thus promising a stronger 
grasp on the neurophysiological operations underlying these 
psychiatric conditions. Patients with Parkinson's disease, for 
instance, show reduced ERN responses relative to control par-
ticipants, which has typically been seen as indicating deficient 
performance monitoring (Falkenstein et  al.  2001; Stemmer 
et  al.  2007; Beste et  al.  2009, 2010). The present findings 

indicate that these patients may have residual or even intact 
error detection while not engaging in active cancellation of 
erroneous motor action. This hypothesis would resonate with 
common motor-related symptoms associated with Parkinson's 
disease (Desmurget et  al.  2004). Similarly, larger ERN re-
sponses for OCD patients relative to control participants may 
indicate a strong impulse to cancel erroneous motor activity 
rather than, or in addition to, overactive monitoring (Gehring 
et  al.  2000; Endrass et  al.  2008). Similar hypotheses present 
themselves for many other clinical conditions that are com-
monly seen as involving abnormal performance monitoring 
(Olvet and Hajcak 2008).

On a broader scale, the present observations highlight the 
promise of systematically assessing the termination of ongo-
ing actions. Behavioral measures such as RDs and electro-
physiological approaches such as analyses related to response 
offset can be easily implemented in a wide variety of tasks in 
healthy participants and clinical populations alike (Morein-
Zamir et al. 2004; Pfister et al. 2023). Moreover, sophisticated 
experimental methodology has been developed to assess 
the termination of action plans that have not yet been exe-
cuted (Verbruggen and Logan 2009; Verbruggen et al. 2019). 
Adapting such methodology to study error cancellation holds 
promise to arrive at a detailed understanding of this intriguing 
process.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Lateralized readiness 
potentials (LRPs), time-locked to response onset and response offset, 
respectively. Figure S2: Event-related potentials (ERPs), locked to re-
sponse onset (R). Figure S3: Event-related potentials (ERPs), locked 
to response offset (R). Figure S4: Single-trial analyses of event-related 
potentials for correct and erroneous responses. Figure S5: Single-trial 
analyses of event-related potentials for erroneous responses with short 
and long response durations (RDs). Table S1: Results of cluster-based 
permutation tests for differences between short and long response dura-
tions (RDs) in lateralized readiness potentials. Table S2: Mean ampli-
tude in the time-window of the error-related negativity (ERN), locked 
to response onset. Table S3: Inferential results for the analyses of mean 
amplitudes in the time-window of the error-related negativity (ERN), 
locked to response onset. Table S4: Inferential results for the analyses 
of mean amplitudes in the time-window of the error-related negativity 
(ERN), locked to response onset, separately for correct and erroneous 
responses (see Table S3 for the full design). Table S5: Comparison of 
mean amplitudes in the time-window of the error-related negativity 
(ERN) for errors with short versus long response duration (RD), locked 
to response onset. Table S6: Peak amplitude of the largest negative peak 
in the time-window of the error-related negativity (ERN), locked to re-
sponse onset. Table S7: Inferential statistics for peak amplitudes of the 
largest negative peak in the time-window of the error-related negativ-
ity (ERN), locked to response onset. Table S8: Peak time of the largest 
negative peak in the time-window of the error-related negativity (ERN), 
locked to response onset. Table S9: Inferential statistics for peak times 
of the largest negative peak in the time-window of the error-related neg-
ativity (ERN), locked to response onset. Table S10: Results of cluster-
based permutation tests for differences between errors with short 
and long response durations (RDs) in event-related potentials (ERPs), 
locked to response onset. Table S11: Results of cluster-based permuta-
tion tests for differences between errors with short and long response 
durations (RDs) in event-related potentials (ERPs), locked to response 
offset. Table S12: Results of cluster-based permutation tests for differ-
ences between erroneous and correct responses in a residue-iteration 
decomposition (RIDE) of the data. Table S13: Results of cluster-based 
permutation tests for differences between errors with short and long re-
sponse durations (RDs) in a residue-iteration decomposition (RIDE) of 
the data. 
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